Production of biodiesel from lipids of Serratia sp. ISTD04 by lipase of Pseudomonas sp. ISTPL3 immobilised on biocomposite materials to increase the enzyme stability and reusability was studied. Lipase extracted, partially purifiedand immobilized onto activated biochar, impregnated with calcite obtained from biomineralization-based conversion of CO from ISTD04, and bioactive ceramics materials, NaCaSiO prepared by chemical process. The composition, structure and texture of biocomposite materials determined by SEM and EDS methods. The composition of synthesized biodiesel was determined by GC-MS. The results imply that the immobilized lipase on activated biochar impregnated with calcite gave the maximum yield of fatty acid methyl esters (FAME:97.41%) followed by immobilized lipase on biochar (FAME:94.91), immobilized lipase on glass-ceramic (FAME:91.50%) and NaOH (FAME:85.63%). The reusability of lipase immobilized on activated biochar impregnated with calcite retained 75.11%and 50% catalytic activity after 5 and 10 cycles of transesterification reaction, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123193DOI Listing

Publication Analysis

Top Keywords

biocomposite materials
12
activated biochar
12
biochar impregnated
12
impregnated calcite
12
immobilized lipase
12
serratia istd04
8
immobilized activated
8
lipase
7
immobilized
5
biodiesel production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!