Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor.

Water Res

Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada. Electronic address:

Published: May 2020

The difficulty of dissolved methane recovery remains a major hurdle for mainstream anaerobic wastewater treatment processes. We recently proposed solvent-based membrane contactor (SMC) for high (>90%) methane recovery over a wide temperature range and net-energy production. Here, we investigate the methane recovery efficacy of the SMC process by using an AnMBR effluent from treating food waste leachate. We observed almost identical methane transfer kinetics to the process employing foulant-free methane-saturated feed solutions, with >92% methane recoveries, showing that organic foulants have insignificant impacts on the methane transport in the SMC. We then performed two different membrane contactor experiments: direct-contact membrane-distillation (DCMD, with transmembrane water vapor flow) and SMC (no water vapor flow). From the negligible fouling observed in the SMC experiment, opposite to the DCMD, we elucidate that the absence of water vapor flow renders the SMC process intrinsically robust to membrane fouling. With the low fouling propensity of the SMC process under highly fouling environments, our study highlights the feasibility of SMC processes to enhance the energy production in mainstream anaerobic wastewater treatment processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.115693DOI Listing

Publication Analysis

Top Keywords

membrane contactor
12
methane recovery
12
smc process
12
water vapor
12
vapor flow
12
dissolved methane
8
food waste
8
waste leachate
8
solvent-based membrane
8
mainstream anaerobic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!