The introduction of a trifluoromethyl (CF) group can dramatically improve a compound's biological properties. Despite the well-established importance of trifluoromethylated compounds, general methods for the trifluoromethylation of alkyl C-H bonds remain elusive. Here we report the development of a dual-catalytic C(sp)-H trifluoromethylation through the merger of light-driven, decatungstate-catalysed hydrogen atom transfer and copper catalysis. This metallaphotoredox methodology enables the direct conversion of both strong aliphatic and benzylic C-H bonds into the corresponding C(sp)-CF products in a single step using a bench-stable, commercially available trifluoromethylation reagent. The reaction requires only a single equivalent of substrate and proceeds with excellent selectivity for positions distal to unprotected amines. To demonstrate the utility of this new methodology for late-stage functionalization, we have directly derivatized a broad range of approved drugs and natural products to generate valuable trifluoromethylated analogues. Preliminary mechanistic experiments reveal that a 'Cu-CF' species is formed during this process and the critical C(sp)-CF bond-forming step involves the copper catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-020-0436-1 | DOI Listing |
Langmuir
December 2024
Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India.
Numerous corporations have overlooked environmental regulations concerning wastewater treatment, leading to a worldwide issue regarding hazardous pollutant discharge, particularly dyes and heavy metal ions, into river sources. Various industries, with water, energy, and biological sectors, actively employ membranes. Membranes capable of showing flux, metal and dye sorption, and catalysis have been developed and are extensively used by functionalizing the pores of ultrafiltration, microfiltration, and nanofiltration membranes with responsive properties.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates. Electronic address:
In this work, we have ultrasonically deposited Cu and Pd nanoparticles on BiS nanoparticles, prepared using an ultrasonication assisted hydrothermal method. We implemented intense ultrasonic waves bearing frequency of 20 kHz and power of 750 W at the acoustic wavelength of 100 mm to reduce Cu and Pd nanoparticles on the BiS surface. The XRD confirmed the formation of highly crystalline BiS nanoparticles with a pure orthorhombic phase and the deposition of copper (Cu) and palladium (Pd) nanoparticles was indicated by the strengthening and broadening of the peaks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Guangxi Normal University, School of Chemistry and Pharmaceutical Sciences, 15 Yucai Road, 541004, Guilin, CHINA.
Skeletal editing represents an attractive strategy for adding complexity to a given molecular scaffold in chemical synthesis. Isodesmic reactions provide a complementary skeletal editing approach for the redistribution of chemical bonds in chemical synthesis. However, catalytic enantioselective isodesmic reaction is extremely scarce and enantioselective isodesmic reaction to synthesize atropisomeric compounds is unknown.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
In this study, we innovatively proposed a facile method to synthesize ultrafine porous copper (Cu) powders under mild conditions by utilizing the reduction properties of reduced iron (Fe) powders. The results showed that Cu was easily reduced to Cu at 1.05-1.
View Article and Find Full Text PDFMolecules
December 2024
Chemistry Department, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates.
The presence of drugs in wastewater effluent is of concern due to their effects on the aquatic fauna and flora and there are growing efforts for their removal from the environment. In this paper, we study the photocatalytic visible-light degradation of naproxen, an over-the-counter anti-inflammatory drug, using 5% copper-doped TiO. The photocatalyst was characterized by XRD and BET surface area measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!