Antimitotic drugs are extensively used in the clinics to treat different types of cancer. They can retain cells in a prolonged mitotic arrest imposing two major fates, mitotic slippage, or mitotic cell death. While the former is molecularly well characterized, the mechanisms that control mitotic cell death remain poorly understood. Here, we performed quantitative proteomics of HeLa cells under mitotic arrest induced with paclitaxel, a microtubule-stabilizer drug, to identify regulators of such cell fate decision. We identified alterations in several apoptosis-related proteins, among which the mitochondrial fission protein Drp1 presented increased levels. We found that Drp1 depletion during prolonged mitotic arrest led to strong mitochondrial depolarization and faster mitotic cell death as well as enhanced mitophagy, a mechanism to remove damaged mitochondria. Our findings support a new role of Drp1 in orchestrating the cellular stress responses during mitosis, where mitochondrial function and distribution into the daughter cells need to be coordinated with cell fate. This novel function of Drp1 in the cell cycle becomes best visible under conditions of prolonged mitotic arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429963PMC
http://dx.doi.org/10.1038/s41418-020-0527-yDOI Listing

Publication Analysis

Top Keywords

mitotic arrest
20
prolonged mitotic
12
mitotic cell
12
cell death
12
mitotic
9
stress responses
8
cell fate
8
cell
6
drp1
5
arrest
5

Similar Publications

Purpose: Induction of meiotic competence is a major goal of the controlled ovarian stimulation used in ART. Do factors intrinsic to the oocyte contribute to oocyte maturation? Deletions in mtDNA accumulate in long-lived post mitotic tissues and are found in human oocytes. If oogenesis cleanses the germline of deleterious deletions in mtDNA, meiotically competent oocytes should contain lower levels of mtDNA deletions vs.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Kojic Acid Derivative as an Antimitotic Agent That Selectively Kills Tumour Cells.

Pharmaceuticals (Basel)

December 2024

Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.

The primary method used to pharmacologically arrest cancer development and its metastasis is to disrupt the cell division process. There are a few approaches that may be used to meet this objective, mainly through inhibiting DNA replication or mitosis. Despite intensive studies on new chemotherapeutics, the biggest problem remains the side effects associated with the inhibition of cell division in non-tumoural host cells.

View Article and Find Full Text PDF

Multiple myeloma is a clonal plasma cell (PC) dyscrasia that arises from precursors and has been studied utilizing approaches focused on CD138 cells. By combining single-cell RNA sequencing (scRNA-seq) with scB-cell receptor sequencing (scBCR-seq), we differentiate monoclonal/neoplastic from polyclonal/normal PCs and find more dysregulated genes, especially in precursor patients, than we would have by analyzing bulk PCs. To determine whether this approach can identify oncogenes that contribute to disease pathobiology, mitotic arrest deficient-2 like-1 (MAD2L1) and S-adenosylmethionine synthase isoform type-2 (MAT2A) are validated as targets with drug-like molecules that suppress myeloma growth in preclinical models.

View Article and Find Full Text PDF

Osmotic stress influences microtubule drug response via WNK1 kinase signaling.

Drug Resist Updat

January 2025

Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain. Electronic address:

Ion homeostasis is critical for numerous cellular processes, and disturbances in ionic balance underlie diverse pathological conditions, including cancer progression. Targeting ion homeostasis is even considered as a strategy to treat cancer. However, very little is known about how ion homeostasis may influence anticancer drug response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!