Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K-AGC kinases, mTOR and LKB1-AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118125PMC
http://dx.doi.org/10.1038/s41422-020-0301-1DOI Listing

Publication Analysis

Top Keywords

signaling networks
20
cell responses
8
immunometabolic signaling
8
signaling
7
networks immunometabolism
4
immunometabolism adaptive
4
adaptive immunity
4
immunity essential
4
essential pathogen
4
pathogen tumor
4

Similar Publications

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone (AZ) in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!