Mesh color edit propagation aims to propagate the color from a few color strokes to the whole mesh, which is useful for mesh colorization, color enhancement and color editing, etc. Compared with image edit propagation, luminance information is not available for 3D mesh data, so the color edit propagation is more difficult on 3D meshes than images, with far less research carried out. This paper proposes a novel solution based on sparse graph regularization. Firstly, a few color strokes are interactively drawn by the user, and then the color will be propagated to the whole mesh by minimizing a sparse graph regularized nonlinear energy function. The proposed method effectively measures geometric similarity over shapes by using a set of complementary multiscale feature descriptors, and effectively controls color bleeding via a sparse ℓ1 optimization rather than quadratic minimization used in existing work. The proposed framework can be applied for the task of interactive mesh colorization, mesh color enhancement and mesh color editing. Extensive qualitative and quantitative experiments show that the proposed method outperforms the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2020.2980962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!