Quantum-Enhanced Velocimetry with Doppler-Broadened Atomic Vapor.

Phys Rev Lett

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Published: March 2020

Traditionally, measuring the center-of-mass (c.m.) velocity of an atomic ensemble relies on measuring the Doppler shift of the absorption spectrum of single atoms in the ensemble. Mapping out the velocity distribution of the ensemble is indispensable when determining the c.m. velocity using this technique. As a result, highly sensitive measurements require preparation of an ensemble with a narrow Doppler width. Here, we use a dispersive measurement of light passing through a moving room temperature atomic vapor cell to determine the velocity of the cell in a single shot with a short-term sensitivity of 5.5  μm s^{-1} Hz^{-1/2}. The dispersion of the medium is enhanced by creating quantum interference through an auxiliary transition for the probe light under electromagnetically induced transparency condition. In contrast to measurement of single atoms, this method is based on the collective motion of atoms and can sense the c.m. velocity of an ensemble without knowing its velocity distribution. Our results improve the previous measurements by 3 orders of magnitude and can be used to design a compact motional sensor based on thermal atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.093202DOI Listing

Publication Analysis

Top Keywords

atomic vapor
8
single atoms
8
velocity distribution
8
velocity
6
ensemble
5
quantum-enhanced velocimetry
4
velocimetry doppler-broadened
4
doppler-broadened atomic
4
vapor traditionally
4
traditionally measuring
4

Similar Publications

Background: Persistently high rates of inhaler errors and poor adherence among Chronic Obstructive Pulmonary Disease (COPD) patients contribute to ineffective symptomatic control, high care burdens, and increased healthcare resource utilization.

Objective: This study aimed to report (i) nurses-identified common problems and errors of inhaler use in COPD patients, (ii) nurses' attitudes, practices, training needs and required support in inhaler education.

Methods: An online questionnaire survey was conducted with nurses working in Hong Kong from May to June 2023 using an exponential, non-discriminative snowball sampling strategy.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

[Curative Treatment for COPD Based on Differentiation Induction by Synthetic Retinoid Am80 and Development of Inhalation Powder].

Yakugaku Zasshi

January 2025

Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science.

Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis and emphysema, and current drug treatments is limited to symptomatic therapy. Thus, there is an urgent need for development of new treatments to repair alveolar destruction. To regenerate the destroyed alveoli, we focused on the differentiation of alveolar epithelial progenitor cells into type I or type II alveolar epithelial cells that constitute the alveoli.

View Article and Find Full Text PDF

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!