Electrolyte solutions and electrode active materials, as core components of energy storage devices, have a great impact on the overall performance. Currently, supercapacitors suffer from the drawbacks of low energy density and poor cyclic stability in typical alkaline aqueous electrolytes. Herein, the ultrathin CoO anode material is synthesized by a facile electrodeposition, followed by postheat treatment process. It is found that the decomposition of active materials induces reduction of energy density and specific capacitance during electrochemical testing. Therefore, a new strategy of preadding Co cations to achieve the dissolution equilibrium of cobalt in active materials is proposed, which can improve the cyclic lifetime of electrode materials and broaden the operation window of electrochemical devices. Co and Li embedded in carbon electrode during charging can enhance H desorption energy barrier, further hampering the critical step of bulk water electrolysis. More importantly, the highly reversible chemical conversion mechanism between CoO and protons is demonstrated to be the fact that a large amount of quantum dots and second-order flaky CoO layers were in situ formed in the electrochemical reaction process, which is first discovered and reported in neutral solutions. The as-assembled device achieves a high operation voltage (2.2 V), excellent cycling stability (capacitance retention of 168% after 10 000 cycles) and ultrahigh energy density (99 W h kg at a power density of 1100 W kg). The as-prepared electrolytes and highly active electrode materials will open up new opportunities for aqueous supercapacitors with high safety, high voltage, high energy density, and long-lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c03908DOI Listing

Publication Analysis

Top Keywords

energy density
16
active materials
12
high voltage
8
energy storage
8
electrode materials
8
energy
7
high
5
materials
5
density
5
preaddition cations
4

Similar Publications

Local control of S atoms on the Co-SACs for effective activation of PMS and degradation imidacloprid: Mechanism insights and toxicity evaluation.

Ecotoxicol Environ Saf

January 2025

School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:

Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.

View Article and Find Full Text PDF

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Interfacial oxygen bridges engineering between NbO and graphene towards advanced sodium ion capacitors.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China. Electronic address:

NbO has become a focus of research for its suitability as an anode material in sodium ion capacitors (SICs), due to its open ionic channels. The integration of NbO with reduced graphene oxide (rGO) is known to boost its electrical conductivity. However, the sluggish interfacial charge transfer kinetics and interface collapse of NbO/rGO pose challenges to its rate capability and durability.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) have broad application prospects in many fields because of their high energy density. However, the poor heat resistance of polyolefin membranes and uneven lithium deposition result in battery failure and even infamous thermal runaway behavior. To improve the intrinsic safety of batteries, fire-retardant, thermally conductive, electrospinning strategies are employed to acquire a functional polyacrylonitrile (PAN) nanofiber separator (PAN@FBN/TPP) containing modified boron nitride (FBN) and triphenyl phosphate (TPP).

View Article and Find Full Text PDF

In this work, we explored the role of a single electron in the energy of neutral and charged clusters of using data visualization and statistical techniques as a new insight. Initially, we studied the effects of one electron, time, and temperature on energy using multiple linear regression analysis with dummy variables, and the results demonstrated that all three predictors significantly affected the energy. Time had a positive impact (direct ratio effect) on the energy of , and and a negative impact (inverse ratio effect) on the energy of while temperature had a positive effect on the energy of all three sodium clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!