The contact resistance (Rc) and the effective carrier mobility (μeff) are considered as the important indicators of the performance of organic field-effect transistors (OFETs). Conventionally, the contact resistance is regarded as the interface effect between the metal electrodes and the organic semiconductors, while the carrier mobility is correlated to the crystallinity and π-π stacking of the organic molecules. In the staggered OFETs, Rc is actually closely correlated to μeff through the channel sheet resistance. Besides, the accuracy of the carrier mobility directly extracted from the non-ideal transfer curves with significant contact effect is always questionable. Herein, a diffusion-lead surface doping approach is employed to improve the contact resistance and mobility issues simultaneously. By suppressing the trap states in the sublimated 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), we observed a 3-fold increase in the carrier mobility from 0.5 to 1.6 cm2 V-1 s-1, and the Rc also drops remarkably from 25.7 kΩ cm to 5.2 kΩ cm. Moreover, the threshold voltage (VTH), subthreshold swing (SS) and the bias stability of the OFETs are also significantly improved. Based on the detailed characterization of the C8-BTBT film upon surface doping, including X-ray diffraction (XRD) for the film crystallinity, Kelvin probe force microscopy (KPFM) for the surface potential, trap state investigation by density of states (DOS) measurement and electrical circuit modeling for partial doping analysis, we confirmed that the spontaneous charge transfer process due to the diffusion of the F4-TCNQ dopants in the C8-BTBT matrix can lead to an effective trap filling. This technique and findings can be potentially developed into a general approach for the improvement of different performance parameters of OFETs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00487aDOI Listing

Publication Analysis

Top Keywords

carrier mobility
16
surface doping
12
contact resistance
12
organic semiconductors
8
organic field-effect
8
field-effect transistors
8
organic
6
resistance
5
mobility
5
understanding molecular
4

Similar Publications

The BeP monolayer exhibits ultra-high and highly anisotropic carrier mobility and 29.3% photovoltaic efficiency.

Nanoscale

January 2025

Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

Two-dimensional materials with a combination of a moderate bandgap, highly anisotropic carrier mobility, and a planar structure are highly desirable for nanoelectronic devices. This study predicts a planar BeP monolayer with hexagonal symmetry that meets the aforementioned desirable criteria using the CALYPSO method and first-principles calculations. Calculations of electronic properties demonstrate that the hexagonal BeP monolayer is an intrinsic semiconductor with a direct band gap of approximately 0.

View Article and Find Full Text PDF

Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.

View Article and Find Full Text PDF

In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.

View Article and Find Full Text PDF

Self-Organized Protonic Conductive Nanochannel Arrays for Ultra-High-Density Data Storage.

Nano Lett

January 2025

National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.

View Article and Find Full Text PDF

Electrostatic and Electronic Effects on Doped Nickel Oxide Nanofilms for Water Oxidation.

J Am Chem Soc

January 2025

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.

An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!