The interaction of methane with pristine surfaces of bulk MoC and Mo2C is known to be weak. In contrast, a series of X-ray photoelectron spectroscopy (XPS) experiments, combined with thermal desorption mass spectroscopy (TDS), for MoCy (y = 0.5-1.3) nanoparticles supported on Au(111)-which is completely inert towards CH4-show that these systems adsorb and dissociate CH4 at room temperature and low CH4 partial pressure. This industrially-relevant finding has been further investigated with accurate density functional theory (DFT) based calculations on a variety of MoCy supported model systems. The DFT calculations reveal that the MoCy/Au(111) systems can feature low C-H bond scission energy barriers, smaller than the CH4 adsorption energy. Our theoretical results for bulk surfaces of Mo2C and MoC show that a simple Brønsted-Evans-Polanyi (BEP) relationship holds for C-H bond scission on these systems. However, this is not the case for methane activation on the MoCy nanoparticles as a consequence of their unique electronic and chemical properties. The discovery that supported molybdenum carbide nanoparticles are able to activate methane at room temperature paves the road towards the design of a new family of active carbide catalysts for methane activation and valorisation, with important implications in climate change mitigation and carbon cycle closure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00228c | DOI Listing |
Chemosphere
January 2025
Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan. Electronic address:
Anaerobic digestion (AD) offers great potential for pollutant removal and bioenergy recovery. However, it faces challenges when using livestock manure (LSM) as a feedstock given its high content of refractory materials (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Florida State University, Tallahassee, FL, 32306-2400, USA.
Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Michigan, Department of Electrical Engineering and Computer Science, UNITED STATES OF AMERICA.
The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biotechnology and Food Science, Durban University of Technology, Durban 4001, South Africa.
Anaerobic digestion is a crucial process in wastewater treatment, renowned for its sustainable biogas production capabilities and the simultaneous reduction of environmental pollution. However, dysregulation of vital biological processes and pathways can lead to reduced efficiency and suboptimal biogas output, which can be seen through low counts per million of sequences related to three critical control points for methane synthesis. Namely, tetrahydromethanopterin S-methyltransferase (MTR), methyl-coenzyme reductase M (MCR), and CoB/CoM heterodisulfide oxidoreductase (HDR) are the last reactions that must occur.
View Article and Find Full Text PDFWater Res
January 2025
Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!