A Modular RNA Domain That Confers Differential Ligand Specificity.

Biochemistry

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States.

Published: April 2020

The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of RNAs and that the scaffold coaxial stack is generally compatible with various ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311191PMC
http://dx.doi.org/10.1021/acs.biochem.0c00117DOI Listing

Publication Analysis

Top Keywords

ligand specificity
12
rna domain
8
modular rna
4
domain confers
4
confers differential
4
ligand
4
differential ligand
4
specificity modularity
4
modularity protein
4
protein domains
4

Similar Publications

Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway.

Peptides

January 2025

University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation. 2092 Tunis, Tunisia.

Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).

View Article and Find Full Text PDF

Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.

View Article and Find Full Text PDF

Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy.

ACS Nano

January 2025

Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.

The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection.

View Article and Find Full Text PDF

Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling.

Neuropsychopharmacol Rep

March 2025

Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process.

View Article and Find Full Text PDF

Extrinsic apoptotic network is driven by Death Ligand (DL)-mediated activation of procaspase-8. Recently, we have developed the first-in class small molecule, FLIPinB, which specifically targets the key regulator of extrinsic apoptosis, the protein c-FLIP, in the caspase-8/c-FLIP heterodimer. We have shown that FLIPinB enhances DL-induced caspase-8 activity and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!