Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal-organic frameworks (MOFs) are diffusely defined as a promising class of porous material for uranium extraction from seawater, but there are still challenges in their stability and anti-biofouling performance. Herein, a water-stable and anti-biofouling ZIF-67/SAP composite hydrogel was reported by the sequential processes of electrostatic interactions between the oppositely charged polymer, ionic gelation, and template growth of ZIF-67 crystals. Entanglement of positively charged polyethyleneimine (PEI) and negatively charged sodium alginate (SA) polymer chains provided external porosities, anti-biofouling properties, and mechanical support for the hydrogels and further reduced the possibility of ZIF-67 aggregation. The neutral composite hydrogel possessed the least Nitzschia on the surface after 7 days contact, which endows the adsorbent with a high uranium uptake capacity of 2107.87 ± 41.64 μg g at 1 mg L uranium-containing seawater with 8.6 × 10 mL Nitzschia. Additionally, this adsorbent showed water stability with an uranium uptake capacity of 232.88 ± 8.02 mg g even after five adsorption-desorption cycles because of the excellent preparation method. Benefitting from the distinctive hierarchical structure and large accessible surface area, the resultant adsorbent achieved a high uranium capacity of 6.99 ± 0.26 mg g in real seawater. This flexible and scalable approach made the MOF/SAP composite hydrogel a highly desirable uranium adsorbent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c03007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!