AI Article Synopsis

  • Mutations in the SHANK3 gene, important for excitatory synapses, are linked to neurodevelopmental issues like autism and intellectual disability, particularly when they cause a truncated protein that can't function properly.
  • A specific patient with a truncating SHANK3 mutation exhibited severe developmental delay, leading researchers to discover that the truncated protein can target the nucleus due to a nuclear localization signal (NLS) present in it.
  • The study revealed that both full-length and truncated SHANK3 interact with β-catenin, a key player in the Wnt signaling pathway, causing them to cluster in the nucleus and suppress transcriptional activation, suggesting that SHANK3 mutations can disrupt this important signaling process.

Article Abstract

Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by β-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with β-catenin via the PDZ domain of Shank3, and the armadillo repeats of β-catenin. As a result of this interaction, truncated forms of Shank3 and β-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by β-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15014DOI Listing

Publication Analysis

Top Keywords

shank3
12
mutations shank3
12
truncating mutations
8
global developmental
8
developmental delay
8
intellectual disability
8
interaction truncated
8
β-catenin
6
protein
5
shank3 associated
4

Similar Publications

Cortex-specific Tmem169 Deficiency Induces Defects in Cortical Neuron Development and Autism-like Behaviors in Mice.

J Neurosci

January 2025

Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, 350122.

The development of the nervous system is a complex process, with many challenging scientific questions yet to be resolved. Disruptions in brain development are strongly associated with neurodevelopmental disorders, such as intellectual disability and autism. While the genetic basis of autism is well established, the precise pathological mechanisms remain unclear.

View Article and Find Full Text PDF

Sensory processing abnormalities are a hallmark of autism spectrum disorder (ASD) and are included in its diagnostic criteria. Among these challenges, food neophobia has garnered attention due to its prevalence and potential impact on nutritional intake and health outcomes. This review describes the correlation between novel odor perception and feeding difficulties within the context of ASD.

View Article and Find Full Text PDF

Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism.

J Appl Toxicol

December 2024

Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages.

View Article and Find Full Text PDF

An open-label study evaluating the safety and efficacy of AMO-01 for the treatment of seizures in Phelan-McDermid syndrome.

HGG Adv

December 2024

Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by haploinsufficiency of the SHANK3 gene. Approximately 25% of individuals with PMS have epilepsy. Treatment of epilepsy in PMS may require multiple anticonvulsants, and in a minority of cases, seizures remain poorly controlled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!