Graphene oxide-silver nanocomposite (GO-Ag) was fabricated via the sonochemical method, which shows unique physiochemical properties. Graphene oxide (GO) and silver nanoparticles (AgNPs) were synthesized by modified Hummer's and Chemical reduction methods, respectively. The synthesized nanocomposite was characterized using powder X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The surface morphology of synthesized nanoparticles was studied using scanning electron microscopy and transmission electron microscopy. The thermoluminescence property of the nanocomposite was analyzed by irradiating the samples in gamma radiation at 1 kGy. Electrochemical reversibility of the GO-Ag nanocomposite was examined by cyclic voltammetry. The photocatalytic application of the nanocomposite was studied using degradation of methylene blue dye. Results reveal that doping of AgNPs on the GO surface not only improves its dye degradation property but also enhances its thermoluminescence property. This knowledge will be helpful in determining the antibacterial property of the GO-Ag nanocomposite in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081393PMC
http://dx.doi.org/10.1021/acsomega.9b03976DOI Listing

Publication Analysis

Top Keywords

go-ag nanocomposite
12
graphene oxide-silver
8
unique physiochemical
8
electron microscopy
8
thermoluminescence property
8
nanocomposite
7
novel synthesis
4
synthesis graphene
4
go-ag
4
oxide-silver go-ag
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!