Starch-Mediated Immobilization, Photochemical Reduction, and Gas Sensitivity of Graphene Oxide Films.

ACS Omega

Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, Brasília, DF 70904-970, Brazil.

Published: March 2020

This work unveils the roles played by potato starch (ST) in the immobilization, photochemical reduction, and gas sensitivity of graphene oxide (GO) films. The ST/GO films are assembled layer by layer (LbL) onto quartz substrates by establishing mutual hydrogen bonds that drive a stepwise film growth, with equal amounts of materials being adsorbed in each deposition cycle. Afterward, the films are photochemically reduced with UV irradiation (254 nm), following a first-order kinetics that proceeds much faster when GO is assembled along with ST instead of a nonoxygenated polyelectrolyte, namely, poly(diallyl dimethylammonium) hydrochloride (PDAC). Finally, the gas-sensing performance of ST/reduced graphene oxide (RGO) and PDAC/RGO sensors fabricated via LbL atop of gold interdigitated microelectrodes is evaluated at different relative humidity levels and in different concentrations of ammonia, ethanol, and acetone. In comparison to the PDAC/RGO sensor, the ones containing ST are much more sensitive, especially when operating in a high-relative-humidity environment. An array comprising these chemical sensors provides unique electrical fingerprints for each of the investigated analytes and is capable of discriminating and quantifying them in a wide range of concentrations, from 10 to 1000 ppm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081415PMC
http://dx.doi.org/10.1021/acsomega.9b03892DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
immobilization photochemical
8
photochemical reduction
8
reduction gas
8
gas sensitivity
8
sensitivity graphene
8
oxide films
8
starch-mediated immobilization
4
films
4
films work
4

Similar Publications

Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.

View Article and Find Full Text PDF

Impacts of Micro/Nanoplastics Combined with Graphene Oxide on Seeds: Insights into Seedling Growth, Oxidative Stress, and Antioxidant Gene Expression.

Plants (Basel)

December 2024

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the literature on the combined effects of MNPs and GFNs on agricultural plants.

View Article and Find Full Text PDF

In order to improve the performance of cement mortar (Portland cement), it was enriched with triclosan, hypochlorous acid, silver nanoparticles and graphene oxide. Cement mortar is used, among other things, to fill the gaps between the tiles of building porcelain stoneware. A number of structural, mechanical and biological tests were carried out.

View Article and Find Full Text PDF

Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups.

View Article and Find Full Text PDF

Nowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!