As one of the branched-chain amino acids, l-valine is an essential nutrient for most mammalian species. In this study, the l-valine producer was first constructed. Additionally, an improved biosensor based on the Lrp-type transcriptional regulator and temperature-sensitive replication was built. Then, the strain was mutagenized by atmospheric and room temperature plasma. A sequential three-step procedure was carried out to screen l-valine-producing strains, including the fluorescence-activated cell sorting (FACS), 96-well plate screening, and flask fermentation. The final mutant HL2-7 obtained by screening produced 3.20 g/L of l-valine, which was 21.47% higher than the titer produced by the starting strain. This study demonstrates that the l-valine-producing mutants can be successfully isolated based on the Lrp sensor system in combination with FACS screening after random mutagenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081258 | PMC |
http://dx.doi.org/10.1021/acsomega.9b02747 | DOI Listing |
Cell Tissue Bank
January 2025
Academic Ophthalmology, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.
View Article and Find Full Text PDFFront Physiol
December 2024
Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
Introduction: Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans.
View Article and Find Full Text PDFViruses
December 2024
Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.
View Article and Find Full Text PDFViruses
November 2024
CSIRO, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia.
One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!