Recent advancements in electronic packaging and image processing techniques have opened the possibility for optics-based portable eye tracking approaches, but technical and safety hurdles limit safe implementation toward wearable applications. Here, we introduce a fully wearable, wireless soft electronic system that offers a portable, highly sensitive tracking of eye movements (vergence) via the combination of skin-conformal sensors and a virtual reality system. Advancement of material processing and printing technologies based on aerosol jet printing enables reliable manufacturing of skin-like sensors, while the flexible hybrid circuit based on elastomer and chip integration allows comfortable integration with a user's head. Analytical and computational study of a data classification algorithm provides a highly accurate tool for real-time detection and classification of ocular motions. In vivo demonstration with 14 human subjects captures the potential of the wearable electronics as a portable therapy system, whose minimized form factor facilitates seamless interplay with traditional wearable hardware.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069716 | PMC |
http://dx.doi.org/10.1126/sciadv.aay1729 | DOI Listing |
Int J Biol Macromol
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
The importance of continuous and reliable pulse wave monitoring is constantly being increased in health signal monitoring and disease diagnoses. Flexible pressure sensors with high sensitivity, low hysteresis and fast response time are an effective means for monitoring pulses. Herein, a special wave-shaped layered porous structure of carbonized wood cellulose sponge (CWCS) was constructed based on natural wood (NW).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department for Clinical Psychology and Psychotherapy, University of Freiburg, Germany. Electronic address:
Background: Increased emotional reactivity to stress, emotional dysregulation and sleep disturbances are interdependent trans-diagnostic processes that are present in internalising disorders such as depression and anxiety disorders. This study investigated which objective and subjective parameters of stress reactivity, sleep and emotional processing would predict symptoms of anxiety and depression in adolescents and young adults.
Methods: Participants were adolescents and young adults between the ages of 14 to 21 (N = 106, 25[24 %] male, M age = 17.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China.
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!