Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Areca nut has anti-inflammatory, antiparasitic, antihypertensive, and antidepressant properties. The pathological hallmarks of inflammatory joint diseases are an increased number of osteoclasts and impaired differentiation of osteoblasts, which may disrupt the bone remodeling balance and eventually lead to bone loss.
Purpose: The present study assessed the effects of arecoline, the main alkaloid found in areca nut, on osteoclast and osteoblast differentiation and function.
Method: M-CSF/RANKL-stimulated murine bone marrow-derived macrophages (BMMs) were incubated with several concentrations of arecoline, and TRAP staining and pit formation were assessed to monitor osteoclast formation. Quantitative real-time RT-PCR and western blot analyses were used to analyze the expression of osteoclast-associated genes and signaling pathways. The effects of arecoline on bone were investigated in an in vivo mouse model of lipopolysaccharide (LPS)-induced trabecular bone loss after oral administration of arecoline. Alizarin red S staining and assays to measure ALP activity and the transcription level of osteoblast-related genes were used to evaluate the effects of arecoline on osteoblast differentiation and bone mineralization.
Results: In a dose-dependent manner, arecoline at concentrations of 50-100 μM reduced both the development of TRAP-positive multinucleated osteoclasts and the formation of resorption pits in M-CSF/RANKL-stimulated BMMs. In M-CSF/RANKL-stimulated BMMs, arecoline also suppressed the expression and translocation of c-Fos and NFATcl, and osteoclast differentiated-related genes via interference with the AKT, MAPK, and NF-kB activation pathways. Femur bone loss and microcomputed tomography parameters were recovered by oral administration of arecoline in the mouse LPS-induced bone loss model. Lastly, arecoline increased ALP activity, bone mineralization, and the expression of osteoblast differentiation-related genes, such as ALP and Runx2, in MC3T3-E1 cells.
Conclusion: Our data suggest that arecoline may attenuate or prevent bone loss by suppressing osteoclastogenesis and promoting osteoblastogenesis. These findings provide evidence supporting arecoline's use as a potential therapeutic agent in bone-loss disorders and diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2020.153195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!