Two largely distinct bodies of research have demonstrated age-related alterations and disease-specific aberrations in both local gamma oscillations and patterns of cortical thickness. However, seldom has the relationship between gamma activity and cortical thickness been investigated. Herein, we combine the spatiotemporal precision of magnetoencephalography (MEG) with high-resolution magnetic resonance imaging and surface-based morphometry to characterize the relationships between somatosensory gamma oscillations and the thickness of the cortical tissue generating the oscillations in 94 healthy adults (age range: 22-72). Specifically, a series of regressions were computed to assess the relationships between thickness of the primary somatosensory cortex (S1), S1 gamma response power, peak gamma frequency, and somatosensory gating of identical stimuli. Our results indicated that increased S1 thickness significantly predicted greater S1 gamma response power, reduced peak gamma frequency, and improved somatosensory gating. Furthermore, peak gamma frequency significantly and partially mediated the relationship between S1 thickness and the magnitude of the S1 gamma response. Finally, advancing age significantly predicted reduced S1 thickness and decreased gating of redundant somatosensory stimuli. Notably, this is the first study to directly link somatosensory gamma oscillations to local cortical thickness. Our results demonstrate a multi-faceted relationship between structure and function, and have important implications for understanding age- and disease-related deficits in basic sensory processing and higher-order inhibitory function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282500 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2020.116749 | DOI Listing |
In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning ( )? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise -cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic = 38,379 (age range = 44 to 84 years old). These morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.
View Article and Find Full Text PDFBones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth ( precocial). Precocial species, such as goats, develop advanced skeletal maturity in utero, making them useful models for studying the dynamics of bone formation under mechanical load.
View Article and Find Full Text PDFBone
January 2025
Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 11, Newark, NJ, 07102, USA. Electronic address:
Attention-deficit hyperactivity disorder (ADHD) is a heterogenous behavioral disorder with inattention, hyperactivity and impulsivity symptoms, indicating the important implication of identifying biotypes and its epicenters in understanding disease's pathogenesis. The study investigated the neuromorphic heterogeneity relating to transcriptional similarity architecture in ADHD, and further analyzed the epicenters of network-spreading in each ADHD biotype and their correlations with clinical characteristics. Individuals with ADHD could be identified into two discriminative biotypes that exhibited distinct neuromorphic aberrances.
View Article and Find Full Text PDFSchizophr Bull
January 2025
Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
Background And Hypothesis: Population-based morphological covariance networks are widely reported to be altered in schizophrenia. Individualized morphological brain network approaches have emerged recently. We hypothesize that individualized morphological brain networks are disrupted in schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!