Discovery of novel pyrrole derivatives as potent agonists for the niacin receptor GPR109A.

Bioorg Med Chem Lett

Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.

Published: May 2020

Novel pyrrole derivatives were discovered as potent agonists of the niacin receptor, GPR109A. During the derivatization, compound 16 was found to be effective both in vitro and in vivo. The compound 16 exhibited a significant reduction of the non-esterified fatty acid in human GPR109A transgenic rats, and the duration of its in vivo efficacy was much longer than niacin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127105DOI Listing

Publication Analysis

Top Keywords

novel pyrrole
8
pyrrole derivatives
8
potent agonists
8
agonists niacin
8
niacin receptor
8
receptor gpr109a
8
discovery novel
4
derivatives potent
4
gpr109a novel
4
derivatives discovered
4

Similar Publications

Cinnamomum camphora, a key multifunctional tree species, primarily serves in landscaping. Leaf color is crucial for its ornamental appeal, undergoing a transformation to red that enhances the ornamental value of C. camphora.

View Article and Find Full Text PDF

BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors.

Angew Chem Int Ed Engl

December 2024

Tsinghua University, Department of Chemistry, 1 Qinghuayuan, Haidian District, 100084, Beijing, CHINA.

The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.

View Article and Find Full Text PDF

The ultrahigh-sensitive detection of HS is reported using a novel dual-ligand metal-organic framework (MOF) electrochemiluminescence (ECL) sensor. By combining tetrakis(4-carboxyphenyl) porphyrin (TCPP) and 1,3,6,8-tetrakis(4-carboxyphenyl) pyrene (TBAPy) as ligands and employing zirconium as the metal source, a spindle-shaped Zr-PyTCPPMOF was successfully designed and synthesized. Notably, the multiple nitrogen structures of porphyrin provided abundant binding sites for sulfur (S), further enhancing the ECL signal of Zr-PyTCPPMOF.

View Article and Find Full Text PDF

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!