Regioselective catalytic transformations using supramolecular directing groups are increasingly popular as it allows for control over challenging reactions that may otherwise be impossible. In most examples the reactive group and the directing group are close to each other and/or the linker between the directing group is very rigid. Achieving control over the regioselectivity using a remote directing group with a flexible linker is significantly more challenging due to the large conformational freedom of such substrates. Herein, we report the redesign of a supramolecular Rh-bisphosphite hydroformylation catalyst containing a neutral carboxylate receptor (DIM pocket) with a larger distance between the phosphite metal binding moieties and the DIM pocket. For the first time regioselective conversion of internal and terminal alkenes containing a remote carboxylate directing group is demonstrated. For carboxylate substrates that possess an internal double bond at the Δ-9 position regioselectivity is observed. As such, the catalyst was used to hydroformylate natural monounsaturated fatty acids (MUFAs) in a regioselective fashion, forming of an excess of the 10-formyl product (10-formyl/9-formyl product ratio of 2.51), which is the first report of a regioselective hydroformylation reaction of such substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202000620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!