Cardiac complications post-stroke are common, and diabetes exacerbates post-stroke cardiac injury. In this study, we tested whether treatment with exosomes harvested from human umbilical cord blood derived CD133+ cells (CD133+Exo) improves cardiac function in type 2 diabetes mellitus (T2DM) stroke mice. Adult (3-4 m), male, BKS.Cg-m+/+Lepr/J (db/db, T2DM) and non-DM (db+) mice were randomized to sham or photothrombotic stroke groups. T2DM-stroke mice were treated with phosphate-buffered saline (PBS) or CD133+Exo (20 μg, i.v.) at 3 days after stroke. T2DM sham and T2DM+CD133+Exo treatment groups were included as controls. Echocardiography was performed, and mice were sacrificed at 28 days after stroke. Cardiomyocyte hypertrophy, myocardial capillary density, interstitial fibrosis, and inflammatory factor expression were measured in the heart. MicroRNA-126 expression and its target gene expression were measured in the heart. T2DM mice exhibit significant cardiac deficits such as decreased left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), increased left ventricular diastolic dimension (LVDD), and reduced heart rate compared to non-DM mice. Stroke in non-DM and T2DM mice significantly decreases LVEF compared to non-DM and T2DM-sham, respectively. Cardiac dysfunction is worse in T2DM-stroke mice compared to non-DM-stroke mice. CD133+Exo treatment of T2DM-stroke mice significantly improves cardiac function identified by increased LVEF and decreased LVDD compared to PBS treated T2DM-stroke mice. In addition, CD133+Exo treatment significantly decreases body weight and blood glucose but does not decrease lesion volume in T2DM-stroke mice. CD133+Exo treatment of T2DM mice significantly decreases body weight and blood glucose but does not improve cardiac function. CD133+Exo treatment in T2DM-stroke mice significantly decreases myocardial cross-sectional area, interstitial fibrosis, transforming growth factor beta (TGF-β), numbers of M1 macrophages, and oxidative stress markers 4-HNE (4-hydroxynonenal) and NADPH oxidase 2 (NOX2) in heart tissue. CD133+Exo treatment increases myocardial capillary density in T2DM-stroke mice as well as upregulates endothelial cell capillary tube formation in vitro. MiR-126 is highly expressed in CD133+Exo compared to exosomes derived from endothelial cells. Compared to PBS treatment, CD133+Exo treatment significantly increases miR-126 expression in the heart and decreases its target gene expression such as Sprouty-related, EVH1 domain-containing protein 1 (Spred-1), vascular cell adhesion protein (VCAM), and monocyte chemoattractant protein 1 (MCP1) in the heart of T2DM-stroke mice. CD133+Exo treatment significantly improves cardiac function in T2DM-stroke mice. The cardio-protective effects of CD133+Exo in T2DM-stroke mice may be attributed at least in part to increasing miR-126 expression and decreasing its target protein expression in the heart, increased myocardial capillary density and decreased cardiac inflammatory factor expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502550 | PMC |
http://dx.doi.org/10.1007/s12975-020-00807-y | DOI Listing |
Front Neurosci
March 2023
Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.
Background And Purpose: Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice.
View Article and Find Full Text PDFFront Neurol
April 2022
Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.
Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic stroke with worse post-stroke neurovascular and white matter (WM) prognosis than the non-diabetic population. In the central nervous system, the ATP-binding cassette transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in maintaining neurovascular stability and WM integrity. Our previous study shows that L-4F, an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective effects alleviating neurovascular and WM impairments in the brain of db/db-T2DM stroke mice.
View Article and Find Full Text PDFTransl Stroke Res
April 2022
Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
Type 2 diabetes mellitus (T2DM) is a major comorbidity exacerbating ischemic brain injury and impairing post-stroke recovery. Our previous study suggested that recombinant human fibroblast growth factor (rFGF) 21 might be a potent therapeutic targeting multiple aspects of pathophysiology in T2DM stroke. This study aims to evaluate the potential effects of rFGF21 on cerebrovascular remodeling after T2DM stroke.
View Article and Find Full Text PDFTransl Stroke Res
February 2021
Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, China.
Regulatory T cells (Tregs) play an immunosuppressive role in various diseases, yet their function remains controversial in stroke and obscure in diabetic stroke. In the present study, Tregs were found downregulated in the peripheral blood of type 2 diabetes mellitus (T2DM) stroke models and patients compared with controls. In ischemic stroke mice (both T2DM and wild type), endogenous Tregs boosted by CD28SA increased CD206+ M2 macrophage/microglia cells, decreased infarct volumes, and improved neurological recovery.
View Article and Find Full Text PDFTransl Stroke Res
February 2021
Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA.
Cardiac complications post-stroke are common, and diabetes exacerbates post-stroke cardiac injury. In this study, we tested whether treatment with exosomes harvested from human umbilical cord blood derived CD133+ cells (CD133+Exo) improves cardiac function in type 2 diabetes mellitus (T2DM) stroke mice. Adult (3-4 m), male, BKS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!