Pediatric medical device approvals lag behind adult approvals. Historically, medical devices have rarely been designed specifically for children, but use in children has most often borrowed from adult or general use applications. While a variety of social, economic, and clinical factors have contributed to this phenomenon, the regulatory process remains a fundamental aspect of pediatric device development and commercialization. FDA's Center for Devices and Radiological Health (CDRH) has established programmatic and technological areas of advancement to support innovation that serves the public health needs of children and special populations. We highlight four regulatory areas that have the potential to shape the future of pediatric cardiology: the CDRH Early Feasibility Study Program, advancements in 3D printing or additive manufacturing, computational modeling and simulation, and the use of real-world evidence for regulatory applications. These programs have the potential to impact all stages of device development, from early conception, design, and prototyping to clinical evidence generation, regulatory review, and finally commercialization. The success of these programs relies on a collaborative community of stakeholders, including government, regulators, device manufacturers, patients, payers, and the academic and professional community societies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-020-02296-0DOI Listing

Publication Analysis

Top Keywords

shape future
8
future pediatric
8
device development
8
regulatory
5
device
5
regulatory science
4
science device
4
device regulation
4
regulation will
4
will shape
4

Similar Publications

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Involving people with lived experience when setting cerebral palsy research priorities: A scoping review.

Dev Med Child Neurol

January 2025

Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

Aim: To describe research priority-setting activities for cerebral palsy (CP) that have been conducted worldwide involving people with lived experience, focusing on participant characteristics, methods employed, identified research priorities, and collaboration as research partners.

Method: The JBI scoping review approach was followed. Six electronic databases and grey literature were searched for all publications up to February 2024.

View Article and Find Full Text PDF

Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery.

Pharmaceutics

December 2024

Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.

The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system's functionality for organ retention and targeted drug release.

View Article and Find Full Text PDF

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects.

Plants (Basel)

January 2025

The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.

Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!