A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The unprecedented membrane deformation of the human nuclear envelope, in a magnetic field, indicates formation of nuclear membrane invaginations. | LitMetric

Human nuclear membrane (hNM) invaginations are thought to be crucial in fusion, fission and remodeling of cells and present in many human diseases. There is however little knowledge, if any, about their lipid composition and dynamics. We therefore isolated nuclear envelope lipids from human kidney cells, analyzed their composition and determined the membrane dynamics after resuspension in buffer. The hNM lipid extract was composed of a complex mixture of phospholipids, with high amounts of phosphatidylcholines, phosphatidylinositols (PI) and cholesterol. hNM dynamics was determined by solid-state NMR and revealed that the lamellar gel-to-fluid phase transition occurs below 0 °C, reflecting the presence of elevated amounts of unsaturated fatty acid chains. Fluidity was higher than the plasma membrane, illustrating the dual action of Cholesterol (ordering) and PI lipids (disordering). The most striking result was the large magnetic field-induced membrane deformation allowing to determine the membrane bending elasticity, a property related to hydrodynamics of cells and organelles. Human Nuclear Lipid Membranes were at least two orders of magnitude more elastic than the classical plasma membrane suggesting a physical explanation for the formation of nuclear membrane invaginations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083927PMC
http://dx.doi.org/10.1038/s41598-020-61746-0DOI Listing

Publication Analysis

Top Keywords

human nuclear
12
nuclear membrane
12
membrane deformation
8
nuclear envelope
8
formation nuclear
8
membrane
8
membrane invaginations
8
nuclear
6
human
5
unprecedented membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!