Bone marrow failure is a characteristic effect of benzene exposure. Our previous study has shown that miR-486-5p is involved in benzene induced-suppression of erythroid differentiation. However, the mechanism of miR-486-5p to initiate the above process remains unclear. In this study, we used miRTar software to predict putative miRNA targets and pathway. We found that miR-486-5p may target Ras-associated protein-1 (Rap1) signaling pathway-associated genes. Our in vitro study further showed significant dose-dependent upregulation of MAGI1 and RASSF5 expressions in hydroquinone (HQ)-induced suppression of erythroid differentiation of K562 cells. Over-expression or down-regulation of miR-486-5p altered MAGI1 and RASSF5 expression and modified erythroid differentiation. Dual-luciferase reporter assay and fluorescence-based RNA electrophoresis mobility assay (FREMSA) further confirmed that miR-486-5p directly bound to the 3'-untranslated region (3'-UTR) of MAGI1 and RASSF5. In addition, the expressions of RAPGEF2 and RAP1A, which are downstream genes of MAGI1, were also significantly increased when HQ inhibited erythroid differentiation. Knockdown of MAGI1 reversed HQ-induced inhibition of erythroid differentiation via downregulation of RAPGEF2, RAP1A and RASSF5. Together, these data indicate that miR-486-5p directly targets MAGI1 and RASSF5 and integrates with Rap1 signaling to modify HQ-induced inhibition of erythroid differentiation in K562 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2020.104830 | DOI Listing |
J Mol Cell Biol
January 2025
Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
Before committing to an erythroid cell lineage, hematopoietic stem cells differentiate along a myeloid cell pathway to generate megakaryocyte-erythroid biopotential progenitor cells in bone marrow. Recent studies suggest that erythroid progenitors (EryPs) could be generated at the level of common myeloid progenitors (CMPs). However, due to a lack of suitable markers, little is known about the early differentiation of these committed EryP cells during CMP development.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France.
ACS Nano
January 2025
Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin- nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.
View Article and Find Full Text PDFThe diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well- known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!