In this study, microcrystalline cellulose (MCC) was isolated from Saccharum spontaneum by integrating alkaline delignification, chlorine-free bleaching, and acid hydrolysis treatments, through an environment friendly and sustainable method. To minimize acid concentrations, the acid hydrolysis conditions were optimized using Taguchi orthogonal L design that evaluated the influences of reaction time, temperature, acid concentration and solution to pulp ratio on the physical and chemical characteristics of MCC. The cellulose source at its different stages of processing was submitted to various analytical techniques for morphological and physiochemical investigations. The highest MCC yield optimized was 83%. This process is favorable due to the use of very low (5% HSO) acid concentration, low corrosivity, effluent reduction, and cost-effectiveness. Detailed analyses showed that the isolated MCC has good crystallinity and thermal stability and hence expected as a high-value precursor for the production of polymer biocomposites for diverse applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.03.158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!