Subclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and β-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis. However, heritability estimates reported for milk BHB and acetone in several dairy cattle breeds were low. The rumen microbial community has been reported to play a significant role in host energy homeostasis and metabolic and physiologic adaptations. The current study aims at investigating the effects of cows' genome and rumen microbial composition on concentrations of acetone and BHB in milk, and identifying specific rumen microbial taxa associated with variation in milk acetone and BHB concentrations. We determined the concentrations of acetone and BHB in milk using nuclear magnetic resonance spectroscopy on morning milk samples collected from 277 Danish Holstein cows. Imputed high-density genotype data were available for these cows. Using genomic and microbial prediction models with a 10-fold resampling strategy, we found that rumen microbial composition explains a larger proportion of the variation in milk concentrations of acetone and BHB than do host genetics. Moreover, we identified associations between milk acetone and BHB with some specific bacterial and archaeal operational taxonomic units previously reported to have low to moderate heritability, presenting an opportunity for genetic improvement. However, higher covariation between specific microbial taxa and milk acetone and BHB concentrations might not necessarily indicate a causal relationship; therefore further validation is needed before considering implementation in selection programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2019-17824 | DOI Listing |
Nutrients
December 2024
Cardiology Unit, IRCCS INRCA, 60127 Ancona, Italy.
Cardiovascular diseases (CVDs) persist as the primary cause of death worldwide, accounting for roughly 17.9 million fatalities each year. The prevalence of obesity, metabolic syndrome, and type 2 diabetes (key risk factors for CVD) continues to escalate at an alarming rate, necessitating novel therapeutic strategies to address this global health crisis.
View Article and Find Full Text PDFDiabetol Int
July 2024
Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555 Japan.
Ketone bodies, comprising β-hydroxybutyric acid (BHB), acetoacetate (AcAc), and acetone, play a vital role as essential energy substrates. In individuals with diabetes, ketone bodies can be elevated under various conditions, including diabetic ketoacidosis, use of sodium-glucose transporter type 2 (SGLT2) inhibitors, and extreme carbohydrate restriction. There are three methods for measuring ketone bodies.
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis.
View Article and Find Full Text PDFAnimals (Basel)
March 2024
Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy.
This review paper provides an in-depth analysis of three critical metabolic diseases affecting dairy cattle such as subacute ruminal acidosis (SARA), ketosis, and hypocalcemia. SARA represents a disorder of ruminal fermentation that is characterized by extended periods of depressed ruminal pH below 5.5-5.
View Article and Find Full Text PDFJ Dairy Sci
March 2024
Walloon Agricultural Research Center (CRA-W), Gembloux, Belgium, 5030. Electronic address:
At the individual cow level, suboptimum fertility, mastitis, negative energy balance, and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were (1) to assess the potential of milk mid-infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), ketosis (β-hydroxybutyrate [BHB] and acetone), mastitis (N-acetyl-β-d-glucosaminidase activity [NAGase] and lactate dehydrogenase), and fertility (progesterone); (2) to test alternative methodologies to partial least squares (PLS) regression to better account for the specific asymmetric distribution of the biomarkers; and (3) to create robust models by merging large datasets from 5 international or national projects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!