Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pollution of the marine environment by litter composed of plastics is a growing concern. Chemical additives such as organophosphate flame retardants (OPFRs), which are added to plastics to improve their qualities, are in focus because they allegedly cause adverse effects on marine fauna. Here we analyse OPFR levels in the muscle of fin whales because, as a mysticete, this cetacean obtains its food by filter-feeding and is thus highly vulnerable to marine litter. Moreover, the fin whale performs long-range migrations from low-latitude areas in winter to high-latitude areas in summer, a trait that makes it a potentially good large-scale biomonitor of pollution. We also analyse OPFR levels in its main prey, the krill Meganyctiphanes norvegica, to assess transfer through diet. The samples analysed consisted of muscle tissue from 20 fin whales and whole-body homogenates of 10 krill samples, all collected off West Iceland. From the 19 OPFRs analysed, we detected 7 in the fin whale and 5 in the krill samples. Tri-n-butyl phosphate (TNBP), Isopropylated triphenyl phosphate (IPPP) and Triphenylphosphine oxide (TPPO) were the most abundant compounds found in both species. Mean ∑OPFR concentration, expressed on a lipid weight basis, was 985 (SD = 2239) ng g in fin whale muscle, and 949 (SD = 1090) ng g in krill homogenates. These results constitute the first evidence of the presence of OPFRs in the tissues of fin whales. Furthermore, they seem to support the non-significance of bioaccumulation of OPFRs through lifespan and of biomagnification trough the food web.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!