This paper aims to develop phantoms for measurement of computed tomography dose index (CTDI) based on a polyester resin mixed with methyl ethyl ketone peroxide (MEKP) as catalyst. CT number and CTDI values of the polyester resin phantoms were compared with a standard polymethyl methacrylate (PMMA) phantom as reference. The percentage of MEKP was varied from 0.3 to 0.6 wt%. The polyester resin phantoms had diameter of 160 mm, length of 150 mm and five cylindrical holes with diameter of 13.5 mm. One hole was positioned at the centre of the phantom and the other four near its periphery, 10 mm from the edge. The results show that the CT number of the polyester resin phantom was about 1%-9% higher than that of the standard PMMA phantom. Among the polyester resin phantoms, the one with 0.3 wt% MEKP is closest to the standard PMMA phantom in terms of CT number. In addition, the difference in weighted CTDI value between the 0.3 wt% polyester resin phantom and the PMMA is less than 5%. Thus, the 0.3 wt% polyester resin is potentially used as an alternative to the standard PMMA, with the advantage of a lower cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6498/ab81a6 | DOI Listing |
Materials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Lukasiewicz Research Network-Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland.
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China.
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
Braided composites are gaining attention in the most industrial applications. To design rods with optimal tensile properties against combined loads, experimental studies were conducted to investigate the effect of using axial yarn and core in different categories on the tensile properties of braided reinforced composite rods. In this study, six types of braided composite rods with different arrangements of braid components (axial yarn or core type) were produced using glass and polyester fibers with epoxy resin as the matrix.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!