This study investigated the removal of Orange II by an electro-Fenton process using a novel recirculation flow-through reactor. The hydrogen peroxide was generated in-situ on the activated carbon fiber (ACF) modified with carbon black and polytetrafluoroethylene (PTFE). The modified ACF cathode was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption study. In light of the production of HO and removal of Orange II, the optimum weight percentage of PTFE in the mixture of carbon black and PTFE was 75%. The effects of some important operating parameters such as current and flow rate were investigated. The best Orange II removal reached 96.7% with mineralization efficiency of 55.4% at 120 min under the current of 100 mA, initial pH 3, Fe 0.3 mM and the flow rate of 7 mL min. The cathode exhibited good regeneration ability and stability. OH was proved to be the main oxidizing species in this flow-through electro-Fenton system. This work demonstrated that such electro-Fenton process using modified ACF cathode was promising for the degradation of organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126483 | DOI Listing |
Chemosphere
February 2025
São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense, 400, São Carlos, 13566-590, Brazil. Electronic address:
The present work investigated the application of UVC combined with electrogenerated HO (UVC/e-HO) for BTA degradation using a Printex L6 carbon-based (PL6C) gas diffusion electrode (GDE). The studies were carried out by analyzing the influence of the current density, pH and initial BTA concentration in the contaminant degradation process. Under optimal conditions using 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China. Electronic address:
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClO) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl-laden effluents. Herein, we shed new light on the roles of HO high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClO production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClO in phenol simulated wastewater containing 30 mM Cl was dropped from 25 mM and 24.
View Article and Find Full Text PDFWater Res
December 2024
Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM). Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
The Electro-Fenton process (EF) has been conventionally applied to efficiently degrade refractory and/or toxic pollutants. However, in this work, EF was used as a reverse engineering tool to selectively synthesize highly value-added products (oxalic or oxamic acid) through the degradation of the model pollutant acetaminophen, a widely used analgesic and antipyretic drug. It was found that the production of either oxalic or oxamic acid is dictated by the applied current density.
View Article and Find Full Text PDFEnviron Res
February 2025
Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China. Electronic address:
To enhance the contaminant removal efficiency of the electro-Fenton (E-Fenton) process, a nitrogen and phosphorus co-doped graphite felt (NPGF) cathode was synthesized using an anodic oxidation technique. An ascorbic acid-coupled NPGF E-Fenton system was then established for the degradation of ciprofloxacin (CIP). The NPGF cathode featured abundant oxygen-containing functional groups (such as -COOH and -OH), which enhanced the selectivity of oxygen reduction and facilitated the formation of HO.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan ROC. Electronic address:
Algal organic matter (AOM) originating from cyanobacteria-impacted reservoirs presents a significant risk to drinking water. Electrochemical oxidation is an emerging technology effective in AOM degradation. This study focuses on the elimination of AOM, including extracellular organic matter (EOM) and intracellular organic matter (IOM), extracted from Microcystis aeruginosa (MA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!