Refinement and Reactivation of a Taste-Responsive Hippocampal Network.

Curr Biol

Graduate Program in Neuroscience, Brandeis University, 415 South Street, Waltham, MA 02453, USA; Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA. Electronic address:

Published: April 2020

Animals need to remember the locations of nourishing and toxic food sources for survival, a fact that necessitates a mechanism for associating taste experiences with particular places. We have previously identified such responses within hippocampal place cells [1], the activity of which is thought to aid memory-guided behavior by forming a mental map of an animal's environment that can be reshaped through experience [2-7]. It remains unknown, however, whether taste responsiveness is intrinsic to a subset of place cells or emerges as a result of experience that reorganizes spatial maps. Here, we recorded from neurons in the dorsal CA1 region of rats running for palatable tastes delivered via intra-oral cannulae at specific locations on a linear track. We identified a subset of taste-responsive cells that, even prior to taste exposure, had larger place fields than non-taste-responsive cells overlapping with stimulus delivery zones. Taste-responsive cells' place fields then contracted as a result of taste experience, leading to a stronger representation of stimulus delivery zones on the track. Taste-responsive units exhibited increased sharp-wave ripple co-activation during the taste delivery session and subsequent rest periods, which correlated with the degree of place field contraction. Our results reveal that novel taste experience evokes responses within a preconfigured network of taste-responsive hippocampal place cells with large fields, whose spatial representations are refined by sensory experience to signal areas of behavioral salience. This represents a possible mechanism by which animals identify and remember locations where ecologically relevant stimuli are found within their environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193762PMC
http://dx.doi.org/10.1016/j.cub.2020.01.063DOI Listing

Publication Analysis

Top Keywords

place cells
12
taste-responsive hippocampal
8
remember locations
8
hippocampal place
8
place fields
8
stimulus delivery
8
delivery zones
8
taste experience
8
taste
6
place
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!