A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. | LitMetric

Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light-matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross-section of 2D-TMDs inhibits the light-matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D-TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D-TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D-TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon-enhanced interaction in 2D-TMDs is briefly described and state-of-the-art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201904271DOI Listing

Publication Analysis

Top Keywords

metal dichalcogenides
8
light-matter interaction
8
optoelectronic properties
8
optical
5
2d-tmds
5
hybridizing plasmonic
4
plasmonic materials
4
materials 2d-transition
4
2d-transition metal
4
dichalcogenides functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!