Recently, novel experimental approaches and molecular techniques have demonstrated that a male's experiences can be transmitted through his germline via epigenetic processes. These findings suggest that paternal exposures influence phenotypic variation in unexposed progeny-a proposal that runs counter to canonical ideas about inheritance developed during the 20th century. Nevertheless, support for paternal germline epigenetic inheritance (GEI) in nonhuman mammals continues to grow and the mechanisms underlying this phenomenon are becoming clearer. To what extent do similar processes operate in humans, and if so, what are their implications for understanding human phenotypic variation, health, and evolution? Here, we review evidence for GEI in human and nonhuman mammals and evaluate these findings in relation to historical conceptions of heredity. Drawing on epidemiological data, reproductive biology, and molecular embryology, we outline developments and opportunities for the study of GEI in human populations, emphasizing the challenges that researchers in this area still face.

Download full-text PDF

Source
http://dx.doi.org/10.1002/evan.21828DOI Listing

Publication Analysis

Top Keywords

germline epigenetic
12
epigenetic inheritance
8
phenotypic variation
8
nonhuman mammals
8
gei human
8
inheritance challenges
4
challenges opportunities
4
opportunities linking
4
human
4
linking human
4

Similar Publications

Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism.

Dev Cell

January 2025

King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:

Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.

View Article and Find Full Text PDF

Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role.

View Article and Find Full Text PDF

From Omics to Multi-Omics: A Review of Advantages and Tradeoffs.

Genes (Basel)

November 2024

Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.

Bioinformatics is a rapidly evolving field charged with cataloging, disseminating, and analyzing biological data. Bioinformatics started with genomics, but while genomics focuses more narrowly on the genes comprising a genome, bioinformatics now encompasses a much broader range of omics technologies. Overcoming barriers of scale and effort that plagued earlier sequencing methods, bioinformatics adopted an ambitious strategy involving high-throughput and highly automated assays.

View Article and Find Full Text PDF

Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology.

Mol Biol Evol

January 2025

Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA.

The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits.

View Article and Find Full Text PDF
Article Synopsis
  • Gallbladder cancer (GBC) is a highly aggressive cancer often found in advanced stages due to vague early symptoms, with recent research highlighting its genetic makeup and the role of environmental factors like heavy metal exposure in increasing risk.
  • Key mutations in genes such as KRAS, TP53, and PIK3CA are linked to GBC progression, revealing important pathways for potential therapies and targeting options.
  • Ongoing clinical trials are exploring various treatments, including immune checkpoint inhibitors and tyrosine kinase inhibitors, with the aim of improving early detection and personalized treatment strategies for better patient outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!