Rationale: Differences in stable isotope composition between an animal and its diet are quantified by experimentally derived diet-tissue discrimination factors. Appropriate discrimination factors between consumers and prey are essential for interpreting stable isotope patterns in ecological studies. While available for many taxa, these values are rarely estimated for organisms within the carrion food web.
Methods: We used a controlled-diet stable isotope feeding trial to quantify isotopic diet-tissue discrimination factors of carbon (δ C values) and nitrogen (δ N values) from laboratory-reared Nicrophorus americanus raised on carrion. We used exoskeleton samples of beetle elytra (wing covers) to determine diet-tissue discrimination factors using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. We also measured the isotopic compositions of five species of co-occurring, wild-caught burying beetles and evaluated feeding relationships.
Results: We found differences in stable carbon discrimination between carrion sources (mammalian and avian) and lab-reared beetles, but no difference in stable nitrogen discrimination. Values for δ C did not differ among wild-caught burying beetle species, but values for δ N were significantly different for the three species with overlapping breeding seasons. Furthermore, wild-caught burying beetles within our study area do not appear to use avian carrion resources to rear their young.
Conclusions: This study informs future interpretation of stable isotope data for insects within the carrion food web. In addition, these results provide insight into carrion resources used by co-occurring burying beetle species in situ. We also demonstrated that independent of adult food type, the larval food source has a significant impact on the isotopic signatures of adult beetles, which can be estimated using a minimally invasive elytra clipping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.8785 | DOI Listing |
Environ Pollut
January 2025
Olaf Malm Laboratory of Environmental Studies (LEA-OM), Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro, Brazil; Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liege, Belgium.
This study investigates essential (Mg, Ca, Fe, Mn, Cu, Zn, Se, Ni) and non-essential (Li, Be, Cr, Rb, Sr, Cs, Cd, Sn, Ba, and Pb) element concentrations and stable isotope (δC, δN, δS) compositions in feathers of Brown Boobies (Sula leucogaster) from three distinct Atlantic islands: the Archipelagos of Saint Peter and Saint Paul (SPSP), Abrolhos, and Cagarras. We aimed to investigate the ecological and environmental factors influencing these seabird populations and assess potential variations in contaminant exposure and dietary habits based on location, sex, and maturity stages. Our finding revealed significant geographical differences in trace element concentrations.
View Article and Find Full Text PDFFood Chem
December 2024
National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China. Electronic address:
Ovalbumin (OVA) is a high-risk allergen with complex tertiary structure in food samples. Here, we developed an accurate UPLC-MS/MS-based assay to improve OVA quantitative performance in processed foods. Full-length isotope-labeled OVA proteins (OVA-I) were synthesized using stable isotope labeling by amino acids in cell culture (SILAC) technique and employed as functional internal standards to ensure similar cleavage sites between internal standards and analytes.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:
Macroalgae widely distribute in intertidal zones, one of blue carbon organisms. However, the regulatory mechanisms of tide on the carbon sequestration of macroalgae are still unclear. This study explored the effects of desiccation-rewetting cycles induced by tide on dissolved organic carbon (DOC) release from Ulva pertusa, which is prevalent from high to low tidal zones.
View Article and Find Full Text PDFSci Total Environ
January 2025
University of Tokyo, Japan.
Over the last 20 years, we have dramatically improved hydrometeorological data including isotopes, but are we making the most of this data? Stable isotopes of oxygen and hydrogen in the water molecule (stable water isotopes - SWI) are well known tracers of the global hydrological cycle producing critical climate science. Despite this, stable water isotopes are not explicitly included in influential climate reports (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!