AI Article Synopsis

Article Abstract

The pathogenic species are very widespread in nature, persisting in the renal tubules of many domestic and wild animal reservoirs. We report the isolation of serovar Pomona in a bottlenose dolphin () stranded along the coast of Sardinia, Italy, in 2016.

Download full-text PDF

Source
http://dx.doi.org/10.7589/2019-07-186DOI Listing

Publication Analysis

Top Keywords

bottlenose dolphin
8
isolation bottlenose
4
dolphin mediterranean
4
mediterranean sea
4
sea pathogenic
4
pathogenic species
4
species widespread
4
widespread nature
4
nature persisting
4
persisting renal
4

Similar Publications

The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks.

J Acoust Soc Am

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.

View Article and Find Full Text PDF

Identification of Two Common Bottlenose Dolphin () Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean.

Animals (Basel)

January 2025

Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.

The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.

View Article and Find Full Text PDF

Understanding population demography of threatened species and how they vary in relation to natural and anthropogenic stressors is essential for effective conservation. We used a long-term photographic capture-recapture dataset (1993-2020) of Indo-Pacific bottlenose dolphins () in the highly urbanised Adelaide Dolphin Sanctuary (ADS), South Australia, to estimate key demographic parameters and their variability over time. These parameters were analysed in relation to environmental variables used as indicators of local and large-scale climatic events.

View Article and Find Full Text PDF

Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.

View Article and Find Full Text PDF

In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (Tursiops truncatus), 25 striped (Stenella coeruleoalba) and 6 Risso's dolphins (Grampus griseus). Cadmium concentrations in tissue samples ranged from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!