Incorporating fluorine (-F) substituents along the main-chains of polymer donors and acceptors is an effective strategy toward efficient bulk-heterojunction (BHJ) solar cells. Specifically, F-substituted polymers often exhibit planar conformations, leading to favorable packing, and electronic coupling. However, the effects of fluorine substituents on the charge generation and recombination characteristics that determine the overall efficiency of BHJ active layers remain critically important issues to examine. In this report, two PBDT[2X]T polymer analogs -poly[4,8-bis((2-ethylhexyl)oxy)benzo[1,2-:4, 5-']dithiophene-thiophene] [PBDT[2H]T] and its F-substituted counterpart poly[4,8-bis((2-ethylhexyl)oxy)benzo[1,2-:4,5-']dithiophene-3,4-difluoro-thiophene] [PBDT[2F]T]-are studied to systematically examine how -F substituents impact the blend morphology, charge generation, carrier recombination and extraction in BHJ solar cells. Considering the large efficiency differences between PBDT[2H]T- and PBDT[2F]T-based BHJ devices, significant emphasis is given to characterizing the out-of-plane morphology of the blend films as vertical phase-separation characteristics are known to have dramatic effects on charge transport and carrier extraction in polymer-fullerene BHJ solar cells. Herein, we use electron energy loss spectroscopy (EELS) in tandem with charge transport characterization to examine PBDT[2X]T-fullerene blend films. Our analyses show that PBDT[2H]T and PBDT[2F]T possess very different charge generation, recombination and extraction characteristics, resulting from distinct aggregation, and phase-distribution within the BHJ blend films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066253PMC
http://dx.doi.org/10.3389/fchem.2020.00144DOI Listing

Publication Analysis

Top Keywords

solar cells
16
bhj solar
12
charge generation
12
blend films
12
fluorine substituents
8
generation recombination
8
recombination extraction
8
charge transport
8
charge
6
bhj
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!