Perovskite solar cells (PSCs) using metal electrodes have been regarded as promising candidates for next-generation photovoltaic devices because of their high efficiency, low fabrication temperature, and low cost potential. However, the complicated and rigorous thermal deposition process of metal contact electrodes remains a challenging issue for reducing the energy pay-back period in commercial PSCs, as the ubiquitous one-time use of a contact electrode wastes limited resources and pollutes the environment. Here, a nanoporous Au film electrode fabricated by a simple dry transfer process is introduced to replace the thermally evaporated Au electrode in PSCs. A high power conversion efficiency (PCE) of 19.0% is demonstrated in PSCs with the nanoporous Au film electrode. Moreover, the electrode is recycled more than 12 times to realize a further reduced fabrication cost of PSCs and noble metal materials consumption and to prevent environmental pollution. When the nanoporous Au electrode is applied to flexible PSCs, a PCE of 17.3% and superior bending durability of ≈98.5% after 1000 cycles of harsh bending tests are achieved. The nanoscale pores and the capability of the porous structure to impede crack generation and propagation enable the nanoporous Au electrode to be recycled and result in excellent bending durability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080531 | PMC |
http://dx.doi.org/10.1002/advs.201902474 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Nanoporous metals, a class of free-standing, high specific-area materials, evolve from interface-controlled self-organization in a selective dissolution (e.g., dealloying).
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution.
View Article and Find Full Text PDFDiscov Nano
December 2024
IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of, Korea.
Sodium metal anodes (SMA), featuring high energy content, low electrochemical potential and easy availability, are a compelling option for sustainable energy storage. However, notorious sodium dendrite and unstable solid-electrolyte interface (SEI) have largely retarded their widespread implantation. Herein, porous amorphous carbon nanofiber embedded with Bi nanoparticles in nanopores (Bi@NC) was rationally designed as a 3D host for SMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!