Ca mediates extracellular vesicle biogenesis through alternate pathways in malignancy.

J Extracell Vesicles

Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Australia.

Published: March 2020

Extracellular vesicles (EVs) are small extracellular membrane vesicles that serve as important intercellular signalling intermediaries in both malignant and non-malignant cells. For EVs formed by the plasma membrane, their biogenesis is characterized by an increase in intracellular calcium followed by successive membrane and cytoskeletal changes. EV production is significantly higher in malignant cells relative to non-malignant cells and previous work suggests this is dependent on increased calcium mobilization and activity of calpain. However, differences in calcium-signalling pathways in the context of malignant and non-malignant EV biogenesis remain unexplored. Here, we demonstrate vesiculation is greater in malignant MCF-7 cells relative to non-malignant hCMEC-D3 cells, increases in free cytosolic Ca via endoplasmic reticulum (ER) Ca store depletion with thapsigargin increases EV biogenesis in both cell types, and vesicular induction is abolished by the intracellular Ca chelator BAPTA-AM. Store-operated calcium entry (SOCE) plays an essential role in the maintenance of EV biogenesis after store depletion. These findings contribute to furthering our understanding of extracellular vesicle biogenesis. Furthermore, since EVs are key mediators in the intercellular transfer of deleterious cancer traits such as cancer multidrug resistance (MDR), understanding the molecular mechanisms governing their biogenesis in cancer is the crucial first step in finding novel therapeutic targets that circumvent EV-mediated MDR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067202PMC
http://dx.doi.org/10.1080/20013078.2020.1734326DOI Listing

Publication Analysis

Top Keywords

extracellular vesicle
8
vesicle biogenesis
8
malignant non-malignant
8
non-malignant cells
8
cells relative
8
relative non-malignant
8
store depletion
8
biogenesis
7
cells
5
mediates extracellular
4

Similar Publications

Extracellular vesicle-mediated VEGF-A mRNA delivery rescues ischaemic injury with low immunogenicity.

Eur Heart J

January 2025

School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China.

Background And Aims: Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease.

Methods: After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury.

View Article and Find Full Text PDF

(APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.

View Article and Find Full Text PDF

Purpose: Multiple Sclerosis is an inflammatory neurodegenerative disease characterised by blood-brain barrier dysfunction and leukocyte infiltration into the CNS. Platelets are best known for their contributions to haemostasis, however, upon activation, platelets release an abundance of soluble and vesicular-associated proteins, termed the platelet releasate (PR). This milieu contains numerous inflammatory and vasoactive proteins, that can attract leukocytes and alter endothelial permeability.

View Article and Find Full Text PDF

Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative pathology. Brain-derived extracellular vesicles (EVs) have been demonstrated to be implicated in AD pathogenesis by facilitating the propagation of Tau, amyloid-β and inflammatory cytokines. However, the impact of peripheral EVs (pEVs) in AD pathogenesis remains poorly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!