One of the main consequences of thymus aging is the decrease in naïve T cell output. This condition accelerates at the onset of puberty, and presents as a major clinical complication for cancer patients who require cytoablative therapy. Specifically, the extensive use of chemotherapeutics, such as cyclophosphamide, in such treatments damage thymic structure and eliminate the existing naïve T cell repertoire. The resulting immunodeficiency can lead to increased incidence of opportunistic infections, tumor growth relapse and/or autoimmune diseases, particularly in older patients. Thus, strategies aimed at rejuvenating the aged thymus following chemotherapeutic damage are required. Previous studies have revealed that sex hormone deprivation in male mice is capable of regenerating the thymic microenvironment following chemotherapy treatment, however, further investigation is crucial to identify gender-based differences, and the molecular mechanisms involved during thymus regeneration. Through phenotypic analyzes, we identified gender-specific alterations in thymocytes and thymic epithelial cell (TEC) subsets from the onset of puberty. By middle-age, females presented with a higher number of thymocytes in comparison to males, yet a decrease in their Aire medullary TEC/thymocyte ratio was observed. This reduction could be associated with an increased risk of autoimmune disease in middle-aged women. Given the concurrent increase in female Aire cTEC/thymocyte ratio, we proposed that there may be an impediment in Aire mTEC differentiation, and Aire cTEC as its upstream precursor. The regenerative effects of LHRH receptor antagonist, degarelix, on TEC subsets was also less pronounced in middle-aged females compared to males, possibly due to slower progression of thymic involution in the former, which presented with greater TEC proportions. Furthermore, following cyclophosphamide treatment, degarelix enhanced thymocyte and mature TEC subset recovery, with faster recovery kinetics observed in females. These events were found to involve both reactivation and proliferation of thymic epithelial progenitor cells. Taken together, the findings from this study portray a relationship between gender disparity and thymus aging, and highlight the potential benefits of LHRH receptor antagonist treatment for thymic regeneration. Further research is required, however, to determine how gender may impact on the mechanisms underpinning these events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062683 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.00302 | DOI Listing |
Biogerontology
January 2025
School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK.
The collective detrimental impact of aged naive lymphocytes and thymus atrophy on the aging of the immune system can be mitigated by exercise. Hence, this research aims to explore the effects of three methods of water-based exercises on immune system aging and thymus atrophy in elderly rats. Thirty-two 24-month-old rats, with an average weight of 320 ± 5 g, were randomly allocated into four groups of endurance training (n = 8), resistance training (n = 8), combined training (n = 8), and control (n = 8).
View Article and Find Full Text PDFMol Oncol
January 2025
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.
Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria BC, Canada.
The thymus is a primary lymphoid organ where major types of T lymphocytes undergo essential developmental processes. Eosinophils are among the cell types present in microenvironments within the thymus, and perhaps surprisingly, the role of thymic eosinophils, especially during homeostatic conditions, remains unclear. Major physiological events impact thymic organization and function throughout life: including age-related involution, pregnancy, and exposure to chemotherapy or radiation.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Biological Sciences, Kean University, Union, NJ 07083, USA.
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.
View Article and Find Full Text PDFLife Sci
February 2025
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães, Portugal. Electronic address:
Aims: The development and selection of T cells occur within the thymus. This organ involutes throughout life, compromising the generation of T cells and, consequently, the efficacy of the immune system. Mesenchymal stem cells (MSC) have beneficial effects on the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!