With the emergence of multidrug-resistant and extensively drug-resistant bacterial pathogens, phage therapy and other alternative or additional therapeutic modalities are receiving resurgent attention. One of the major obstacles in developing effective phage therapies is the evolution of phage resistance in the bacterial host. When was infected with a phage that uses O-antigen as receptor, phage resistances typically achieved through changing or loss of O-antigen structure. In this study, we showed that dsRNA phage phiYY uses core lipopolysaccharide as receptor and therefore efficiently kills the O-antigen deletion mutants. Furthermore, by phage training, we obtained PaoP5-m1, a derivative of dsDNA phage PaoP5, which is able to infect mutants with truncated O-antigen. We then generated a cocktail by mixing phiYY and PaoP5-m1 with additional three wide host range phages. The phage cocktail was effective against a diverse selection of clinical isolates of , and in the short-term constrained the appearance of the phage-resistant mutants that had beleaguered the effectiveness of single phage. Resistance to the 5-phage cocktail emerges after several days, and requires mutations in both and Thus, this study provides an alternative strategy for designing phage cocktail and phage therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065532PMC
http://dx.doi.org/10.3389/fmicb.2020.00327DOI Listing

Publication Analysis

Top Keywords

phage
12
phage therapy
8
phage resistance
8
phage cocktail
8
cocktail
5
development bacteriophage
4
bacteriophage cocktail
4
cocktail constrain
4
constrain emergence
4
emergence phage-resistant
4

Similar Publications

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Cad1 turns ATP into phage poison.

Cell Host Microbe

January 2025

Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Copenhagen, Denmark. Electronic address:

Type III CRISPR-Cas executes a multifaceted anti-phage response, activating effectors such as a nuclease or membrane depolarizer. In a recent Cell paper, Baca and Majumder et al. report an accessory effector, Cad1, which deaminates ATP into ITP, causing ITP accumulation and host growth arrest, thereby inhibiting phage propagation.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!