Mesenchymal stem cells (MSCs) are multipotent cells with regenerative and immunomodulatory properties. Several aspects of MSC function have been attributed to the paracrine effects of MSC derived extracellular vesicles (EVs). Although MSC EVs show great promise for regenerative medicine applications, insights into their uptake mechanisms by different target cells and the ability to control MSC EV properties for defined function have remained elusive knowledge gaps. The primary goal of this study is to elucidate how the basic properties of MSC derived EVs can be exploited for function-specific activity in regenerative medicine. Our first important observation is that, MSC EVs possess a common mechanism of endocytosis across multiple cell types. Second, altering the MSC state by inducing differentiation into multiple lineages did not affect the exosomal properties or endocytosis but triggered the expression of lineage-specific genes and proteins and respectively. Overall, the results presented in this study show a common mechanism of endocytosis for MSC EVs across different cell types and the feasibility to generate functionally enhanced EVs by modifications to parental MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063066 | PMC |
http://dx.doi.org/10.3389/fphar.2020.00163 | DOI Listing |
Postgrad Med J
December 2024
State Key Laboratory of Oral Diseases and National Center of Stomatology and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Extracellular vesicles (EVs) are membrane vesicles derived from cells and serve as an endogenous mechanism for intercellular communication. Since the discovery of their capacity to effectively transfer biological information, their potential as drug delivery vehicles has garnered significant scientific interest. Particularly, EVs derived from mesenchymal cells (MSC-EVs) have emerged as a highly promising method for drug delivery.
View Article and Find Full Text PDFCent Eur J Immunol
November 2024
Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey.
Mesenchymal stem cells (MSCs), which are multipotent adult cells with many therapeutic effects, can be derived from stromal tissues. MSCs also exert immunoregulatory effects through extracellular vesicles (EVs), cell membrane structures that carry paracrine factors. It is thought that the mediators (cytokines, growth factors, etc.
View Article and Find Full Text PDFRNA Biol
December 2025
Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.
View Article and Find Full Text PDFCell Tissue Res
December 2024
Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia.
Decidual mesenchymal stromal cells (DMSC) were the source of extracellular vesicles (DMSC_EV). The xCELLigence real-time cell growth assay revealed increasing concentrations of EVs decreased DMSC attachment in the early growth phase but stimulated DMSC proliferation at day 7 when grown on tissue culture plastic (TCP). DMSC attachment and proliferation varied depending on the growth surface and DMSC_EV supplementation.
View Article and Find Full Text PDFProg Retin Eye Res
December 2024
Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland. Electronic address:
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!