Intracranial electroencephalography (IEEG) involves recording from electrodes placed directly onto the cortical surface or deep brain locations. It is performed on patients with medically refractory epilepsy, undergoing pre-surgical seizure localization. IEEG recordings, combined with advancements in computational capacity and analysis tools, have accelerated cognitive neuroscience. This Perspective describes a potential pitfall latent in many of these recordings by virtue of the subject population-namely interictal epileptiform discharges (IEDs), which can cause spurious results due to the contamination of normal neurophysiological signals by pathological waveforms related to epilepsy. We first discuss the nature of IED hazards, and why they deserve the attention of neurophysiology researchers. We then describe four general strategies used when handling IEDs (manual identification, automated identification, manual-automated hybrids, and ignoring by leaving them in the data), and discuss their pros, cons, and contextual factors. Finally, we describe current practices of human neurophysiology researchers worldwide based on a cross-sectional literature review and a voluntary survey. We put these results in the context of the listed strategies and make suggestions on improving awareness and clarity of reporting to enrich both data quality and communication in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062638 | PMC |
http://dx.doi.org/10.3389/fnhum.2020.00044 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Departments of Neurology & Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada.
Background: Catamenial epilepsy, which is defined as a periodicity of seizure exacerbation occurring during the menstrual cycle, has been reported in up to 70% of epileptic women. These seizures are often non-responsive to medication and our understanding of the relation between menstrual cycle and seizure generation (i.e.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Purpose: Late-onset epilepsy (LOE) usually refers to the development of epilepsy at the age of 50 years or older. Approximately 20 % of LOE cases are diagnosed as late-onset epilepsy of unknown etiology (LOUE) due to a lack of an identifiable cause. The aim of this study was to investigate the clinical features, seizure and cognitive outcomes of patients with LOUE in West China.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Epilepsy service, Department of Neurology, Cork University Hospital, Cork, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
Objective: Multifocal epilepsy is an important subtype of epilepsy, but it is sometimes difficult to recognise in general clinical practice. Distinguishing (uni)focal from multifocal drug resistant epilepsy is important when considering surgical resection. The presence of multiple discrete autonomous epileptogenic zones may limit surgical options to neuromodulation or palliative resection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!