To evaluate if mixed micelles of Dox@FA-BSP-SA/TPGS can allow for the superior antitumor efficiency than Dox@FA-BSP-SA micelles. The complex of doxorubicin (Dox) and sodium cholate was encapsulated into the mixed micelles composed of folate-mediated stearic acid-modified Bletilla striata polysaccharide (FA-BSP-SA) and D-α-tocopheryl polyethylene glycol succinate (TPGS). Its average particle size increased whereas load capacity (LC) and encapsulation efficiency (EE) decreased with the increase of TPGS mass ratio in the mixed micelles. The changes of morphology, particle size and doxorubicin release in vitro demonstrated the pH sensitivity of micelles. FA-BSP-SA/TPGS mixed micelle exhibited average particle size of 147.3 nm, LC of 14.4% and EE of 91.9% for doxorubicin at the weight ratio of 3: 1. The doxorubicin release rate of micelles was faster in pH 5.0 media compared with that in pH 6.0 and 7.4 media. The cytotoxicity in vitro and antitumor efficacy in vivo results of Dox@FA-BSP-SA/TPGS micelle were more superior to that of free doxorubicin and Dox@FA-BSP-SA single micelle. For Dox@FA-BSP-SA/TPGS micelle, the clathrin-mediated endocytosis was the dominant mechanism of intracellular uptake. The FA-BSP-SA/TPGS mixed micelle may be a promising drug delivery system for cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.03.136 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.
Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Medical College, Inner Mongolia Minzu University, Tongliao 028043, China.
The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!