A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells. | LitMetric

Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells.

Cell Transplant

Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.

Published: June 2021

There is substantial evidence that stem and progenitor cells secrete trophic factors that have potential for repairing injured tissues. We have previously reported that the conditioned medium (CM) obtained from endothelial progenitor cells (EPC) cultures protects striatal neurons against 3-nitropropionic acid-induced toxicity. In the present study we tested the hypothesis that EPC-CM may support cortical neuronal cell function and/or survival. EPC were isolated from the peripheral blood of healthy human donors and cultured in hypoxic conditions (1.5% O) to stimulate the secretion of growth factors. The supernatant or conditioned medium (EPC-CM) was then collected and used for the various experiments. Primary cultures of cerebral cortex from fetal rat embryonic day 14 were treated with EPC-CM and challenged by glucose and serum deprivation. We observed that EPC-CM treatment significantly increased total cell number and cell viability in the cultures. Similarly, the number of lba1-expressing cells was significantly upregulated by EPC-CM, while western blot analyses for the astroglial marker glial fibrillary acidic protein did not show a marked difference. Importantly, the number of beta-lll-tubulin-positive neurons in the cultures was significantly augmented after EPC-CM treatment. Similarly, western blot analyses for beta-III-tubulin showed significant higher signal intensities. Furthermore, EPC-CM administration protected neurons against glucose- and serum deprivation-induced cell loss. In sum, our findings identified EPC-CM as a means to promote viability and/or differentiation of cortical neurons and suggest that EPC-CM might be useful for neurorestorative approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444205PMC
http://dx.doi.org/10.1177/0963689720912689DOI Listing

Publication Analysis

Top Keywords

progenitor cells
12
epc-cm
9
endothelial progenitor
8
cortical neuronal
8
conditioned medium
8
epc-cm treatment
8
western blot
8
blot analyses
8
progenitor cell-derived
4
cell-derived factors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!