In the present study, radiation shielding properties of two glassy composite materials that are widely used in electronics, photovoltaic applications, and sensor technology, were investigated in the photon energy range from 15 keV to 15 MeV. The materials chosen were (ITO)/VO/BO and ZnO/VO/BO including various concentrations of BO. Radiation interaction was simulated and shielding parameters calculated by means of the MCNP and BXCOM codes. More specifically, buildup factors, effective electron density ([Formula: see text]) and effective atomic number ([Formula: see text]) were calculated with BXCOM, while mass attenuation coefficients ([Formula: see text]), half-value layer (HVL) and tenth-value layer (TVL) values were calculated with MCNP. The results were compared with those obtained with the WinXCOM code, for validation. Acceptable and preferable results were obtained for both composites as alternative to other glassy shielding materials. The composite including ITO showed better shielding properties than the composite including ZnO. In terms of radiation shielding, both composites turned out to be better than concrete and close to lead.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00411-020-00838-xDOI Listing

Publication Analysis

Top Keywords

radiation shielding
12
shielding properties
12
[formula text]
12
terms radiation
8
calculated mcnp
8
composite including
8
shielding
6
comparison ito
4
ito zno
4
zno ternary
4

Similar Publications

Spent nuclear fuel (SNF) from the United States' nuclear power plants has been placed in dry cask storage systems since the 1980s. Due to the lack of a clear path for permanent geological repository for SNF, consolidated and long-term storage solutions that use durable concrete and avoid current aging and licensing challenges are becoming indispensable. Ultra-high-performance concrete (UHPC) is a rapidly growing advanced concrete solution with superior mechanical and durability properties that can help realize future resilient nuclear storage facilities.

View Article and Find Full Text PDF

Acral Melanoma: A Review of Its Pathogenesis, Progression, and Management.

Biomolecules

January 2025

Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Acral melanoma is a distinct subtype of cutaneous malignant melanoma that uniquely occurs on ultraviolet (UV)-shielded, glabrous skin of the palms, soles, and nail beds. While acral melanoma only accounts for 2-3% of all melanomas, it represents the most common subtype among darker-skinned, non-Caucasian individuals. Unlike other cutaneous melanomas, acral melanoma does not arise from UV radiation exposure and is accordingly associated with a relatively low tumor mutational burden.

View Article and Find Full Text PDF

Ultraportable (UP) X-ray devices are ideal to use in community-based settings, particularly for chest X-ray (CXR) screening of tuberculosis (TB). Unfortunately, there is insufficient guidance on the radiation safety of these devices. This study aims to determine the radiation dose by UP X-ray devices to both the public and radiographers compared to international dose limits.

View Article and Find Full Text PDF

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!