A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual promoter strategy enhances co-expression of α-L-rhamnosidase and enhanced fluorescent protein for whole-cell catalysis and bioresource valorization. | LitMetric

Dual promoter strategy enhances co-expression of α-L-rhamnosidase and enhanced fluorescent protein for whole-cell catalysis and bioresource valorization.

Sci Total Environ

School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China. Electronic address:

Published: June 2020

Developing circular economy is the only way to improve the efficiency of resource utilization. Whole-cell catalysis is an effective method to recycle enzymes, improve catalytic efficiency, and reduce production costs. The enzyme, α-L-rhamnosidase has considerable application prospects in the field of biocatalysis as it can hydrolyze a variety of α-L rhamnoses. In the present study, the genes for α-L-rhamnosidase (rhaB1) and enhanced fluorescent protein (EGFP) were co-expressed using a bi-promoter expression vector pRSFDuet1 and their enzymatic properties were evaluated. To our knowledge, this study has established an effective rhamnosidase-fluorescent indicator and whole-cell catalytic system for the first time. Moreover, we analyzed the change in the activity of the crude rhaB1-EGFP as well as its whole-cell during the biocatalysis process using fluorescence intensity. Recombinant rhaB1-EGFP as a product which contains rhaB1 and EGFP showed higher thermal stability, pH stability, and conversion efficiency than rhaB1, and its optimum temperature for rutin catalysis was ideal for industrial applications. Moreover, under the optimal conditions of a rutin concentration of 0.05 g/L, pH of 6.0, temperature of 40 °C, a yield of 92.5% was obtained. Furthermore, we demonstrated the relationship between the fluorescence intensity and enzyme activity. This study established a highly efficient whole-cell catalytic system whose activity can be evaluated by fluorescence intensity, providing a reference for enzyme recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137865DOI Listing

Publication Analysis

Top Keywords

fluorescence intensity
12
enhanced fluorescent
8
fluorescent protein
8
whole-cell catalysis
8
study established
8
whole-cell catalytic
8
catalytic system
8
whole-cell
5
dual promoter
4
promoter strategy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!