Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a new approach to the design of prescribed performance adaptive control for uncertain horizontal platform systems with the finite-time convergence. Following an appropriate performance function and error transformation, a new adaptive control law is proposed by using a novel integral non-singular terminal sliding mode surface. The proposed approach simultaneously guarantees that (i) the transient responses of the closed-loop system possess some advanced properties such as the existence of the prespecified lower bound of the convergence rate and of the pre-established upper bound of the maximum overshoot; and (ii) the finite-time convergence of the state trajectories/tracking errors to zero. The global stability and finite-time convergence are strictly analyzed. The proposed method is clarified and verified through two numerical simulation examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2020.03.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!