Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the present study was to compare the enantioseparation performance of chiral stationary phases (CSPs) which were derived from chitosans of different sources and molecular weights. Therefore, chitosans of shrimp and crab shells were prepared. The viscosity-average molecular weights of the chitosans both prepared from shrimp and crab shells were 2.8 × 10 and 1.4 × 10. The chitosans were isobutyrylated yielding isopropylcarbonyl chitosans which were then derivatized with 4-methylphenyl isocyanate to provide chitosan 3,6-bis(4-methylphenylcarbamate)-2-(isobutyrylamide)s. The chitosan 3,6-bis(4-methylphenylcarbamate)-2-(isobutyrylamide)s were used as chiral selectors (CSs) with which the corresponding CSPs were prepared. With the same chiral analytes and under the same mobile phase conditions, the enantioseparation capability of the CSPs was evaluated by high-performance liquid chromatography. In two CSs prepared from the same source, the one with higher molecular weight showed better enantioseparation capability; in two CSs prepared with the chitosans of the same molecular weight, the one derived from shrimp shell exhibited better performance. With regard to the two shrimp chitosan CSs, most of chiral analytes interacted more strongly with the one with lower molecular weight, and an opposite trend was found for the two crab chitosan CSs. Based on the results observed in the present study and in previous work, we believe that the influence of molecular weight on CSP enantioseparation performance is related to the substituent introduced in the CS molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.461029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!