Amphiphilic Peptide with Dual Functionality Resists Biofouling.

Langmuir

Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.

Published: April 2020

Biofouling, the accumulation of organisms on surfaces, can lead to several undesirable phenomena, including hospital-acquired infections, blockage of water purification systems, and food contamination. The solution to the problem should be nontoxic and environmentally friendly, so that it could be applied on different surfaces and could come into contact with food, water, or human tissues. Peptides can provide such a solution, since they are biocompatible and biodegradable materials that can resist biofouling, either by preventing the attachment of organisms to the surface (antifouling) or by killing the bacteria (antimicrobial activity). This paper presents an amphiphilic peptide with antifouling, antimicrobial, and adhesive properties. The peptide adheres to titanium surfaces and inhibits the adhesion of both Gram-negative and Gram-positive bacteria to surfaces. In addition, it reduces the growth of bacteria in solution. This peptide has both antifouling and antimicrobial properties, which could be useful in health care systems, food packaging, and other systems that suffer from biocontamination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b03997DOI Listing

Publication Analysis

Top Keywords

amphiphilic peptide
8
systems food
8
peptide antifouling
8
antifouling antimicrobial
8
peptide dual
4
dual functionality
4
functionality resists
4
resists biofouling
4
biofouling biofouling
4
biofouling accumulation
4

Similar Publications

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Amphiphilic dynamic covalent polymer vectors of siRNA.

Chem Sci

December 2024

Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France

Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!