Doubled haploid (DH) technology has changed the maize-breeding landscape in recent years. Traditionally, DH production requires the use of chemical doubling agents to induce haploid genome doubling and, subsequently, male fertility. These chemicals can be harmful to humans and the plants themselves, and typically result in a doubling rate of 10%-30%. Spontaneous genome doubling and male fertility of maize haploids, without using chemical doubling agents, have been observed to a limited extent, for nearly 70 years. Rates of spontaneous haploid genome doubling (SHGD) have ranged from less than 5% to greater than 50%. Recently, there has been increased interest to forgo chemical treatment and instead utilize this natural method of doubling. Genetic-mapping studies comprising worldwide germplasm have been conducted. Of particular interest has been the detection of large-effect quantitative trait loci (QTL) affecting SHGD. Having a single large-effect QTL with an additive nature provides flexibility for the method of introgression, such as marker-assisted backcrossing, marker-assisted gene pyramiding, and systematic design. Moreover, it allows implementation of new methodologies, such as haploid-inducer mediated genome editing (HI-edit) and promotion of alleles by genome editing. We believe the use of SHGD can further enhance the impact of DH technology in maize.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154852 | PMC |
http://dx.doi.org/10.3390/plants9030369 | DOI Listing |
Exp Mol Med
January 2025
Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.
View Article and Find Full Text PDFNat Commun
January 2025
Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.
The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:
Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. Electronic address:
A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!